2 Maximum Cut Problem
نویسندگان
چکیده
2.1 Greedy algorithm We can think of the cut as a partition of verticesl C = (S, V \ S) whiere S ⊆ V . We can switch between different cuts by moving vertices across the cut, in to or out of S. Moving v across the cut swaps its cut edges with its non-cut edges. This increase the value of the cut when the total weight of its non-cut edges exceeds the weight of the cut edges. If v ∈ S (and similarly if v ∈ V \ S): ∑ e∈δ(v)∩(S×S) w(e) > ∑ e∈δ(v)∩(S×(V \S)) w(e)
منابع مشابه
Recovery in Perturbation - Stable Maximum Cut Instances ∗
Today we continue our discussion of exact recovery under perturbation-stability assumptions. We’ll look at a different cut problem than last lecture, and this will also give us an excuse to touch on two cool and fundamental topics, metric embeddings and semidefinite programming. The Maximum Cut problem is a famous NP -hard problem. The input is an undirected graph G = (V,E), where each edge e ∈...
متن کاملCS261: A Second Course in Algorithms Lecture #20: The Maximum Cut Problem and Semidefinite Programming∗
Now that you’re finishing CS261, you’re well equipped to comprehend a lot of advanced material on algorithms. This lecture illustrates this point by teaching you about a cool and famous approximation algorithm. In the maximum cut problem, the input is an undirected graph G = (V,E) with a nonnegative weight we ≥ 0 for each edge e ∈ E. The goal is to compute a cut — a partition of the vertex set ...
متن کاملA Faster Algorithm for Finding the Minimum Cut in a Directed Graph
We consider the problem of finding the minimum capacity cut in a directed network G with n nodes. This problem has applications to network reliability and survivability and is useful in subroutines for other network optimization problems. One can use a maximum flow problem to find a minimum cut separating a designated source node s from a designated sink node t, and by varying the sink node one...
متن کاملAn exact algorithm for MAX-CUT in sparse graphs (Preliminary version)1
The MAX-CUT problem consists in partitioning the vertex set of a weighted graph into two subsets. The objective is to maximize the sum of weights of those edges that have their endpoints in two different parts of the partition. MAX-CUT is a well known NP-hard problem and it remains NP-hard even if restricted to the class of graphs with bounded maximum degree ∆ (for ∆ ≥ 3). In this paper we stud...
متن کاملLecture 16 : Maximum Cut , Integerality Gap and Metric Embedding
In the last lecture, we introduced the classic problem of maximum cut, where the objective is to find a cut of the given graph with maximum weight. We also saw some techniques give 1/2-approximation, such as random assignment and local search. In this lecture we will introduce the semidefinite-programming (SDP) relaxation for this problem. This approach, proposed by Goemans &Williamson in 90’s,...
متن کاملFinding k-cuts within Twice the Optimal
Two simple approximation algorithms for the minimum k-cut problem are presented. Each algorithm finds a k cut having weight within a factor of (2 2/k) of the optimal. One algorithm is particularly efficient-it requires a total of only n maximum flow computations for finding a set of near-optimal k cuts, one for each value of k between 2 and n.
متن کامل